Ensuring Quality of Subsamples of Large Catches of Fish

Martin A. Stapanian, U.S. Geological Survey, Sandusky, OH

Source

N, Am, J. Fish, Manage, 32: 1033-1038 (2012).

Problem 1: How to take unbiased subsamples of large catches of fish?

Large fish surveys

Different S.S. methods Among agencies Among crew members

Who cares?

Data from fish surveys used to determine catch quotas and standing stock.

Error can mean $\mathbf{\$ \$ \$ \$ \$}$

Interpretation of inter-agency data?

Problem 2: How good are the estimates of the subsample?

In Practice

Remove large, rare fish. Then

- "By eye": Take "random" area or volume of sample
- "Divide" sample (better)

"By Eye" Methods:

 Spread out catch and Take "random" shovel fulls Take "random" area Collect "random" volume
Drawbacks

"By eye":
Not repeatable
Sample not mixed evenly
Often observer bias

"Divide" Sample Methods:

Pour catch over adjacent tubs. Select one at random.

Repeat as needed.

Drawbacks

"Divide" sample:
Difficult when rough Cumbersome
"Pouring" variance

Solution--Splitter apparatus

Repeatable, quantifiable Easy to use, build

 Defendable

Hopper

Gravity-fed Removable shutter 1. Place fish in hopper. 2. Open shutter. 3. Sample divides.

Splitter

Procedure

1. Remove large, rare species
2. Mix sample
3. Pour sample in hopper
4. Remove shutter
5. Determine side to "keep"
6. Repeat steps 3-5 as needed

Performance of Apparatus: Methods

Representative of bottom trawl catches in western Lake Erie

Single splits (i.e., ~ 50\%)

Three replicates

Quantify error in estimating

Number

 Proportion From 1-split subsample
Estimate number of each

 species ($\boldsymbol{n}_{\boldsymbol{f}}$) using ratio of mass of total sample : mass of subsample

$\boldsymbol{n}_{\boldsymbol{i}}=\mathrm{n}_{i, j} \cdot\left(\left[\mathrm{~m}_{j}+\mathrm{m}_{k}\right] / \mathrm{m}_{\mathrm{j}}\right)$, where

$\mathrm{n}_{\mathrm{i}, \mathrm{j}}=$ no. species \boldsymbol{i} in subsample $\mathrm{m}_{\mathrm{j}}=$ mass of subsample
$\mathrm{m}_{\mathrm{k}}=$ mass of fish in portion of sample not counted

Error estimating number

$$
E N_{i}=\left(n_{i}-N_{i}\right) / N_{i} \text { where }
$$

$\mathbf{N}_{\mathrm{i}}=$ known no. species \boldsymbol{i} (total sample)

and

$\boldsymbol{n}_{\boldsymbol{i}}=$ estimated no. species \boldsymbol{i} (subsample)

Error estimating proportion

 $E P_{i}=\left(\mathbf{n}_{i j} /\right.$ [total subsample] $)-\mathbf{P}_{\mathbf{i}}$ where$\mathbf{n}_{i, j}=$ no. species i in subsample $\mathbf{P}_{\mathrm{i}}=$ known prop. species Iin total sample

Results

Error

 estimating prop.Species

Mean error estimating number

em. shiner white perch -0.109
-0.022 trout-perch
-0.004 round goby -0.030 Not sig. diff. from 0

Mean error estimating prop.

em. shiner
-0.011
white perch
-0.003
trout-perch
0.010 round goby 0.004

Not sig. diff. from 0

Discussion

Apparatus performed well - EN N_{i} and $E P_{\mathrm{i}} \sim 0$

- ABS (mean EN N_{i}) $\leq 3 \%$ for 3 spp .
- ABS (mean $\left.E P_{i}\right) \leq 1.1 \%$ for all spp.

$E N_{i}$ for em. shiner $>3 \mathrm{X}$ others

Potential sources:

- 27\% mass but 60\% number
- Tended to stick to other fish

Suggest em. shiner did not mix uniformly

Apparatus

Height comfortable Wood prototype: \$30 \& 3 hrs. User can split when ready Many other uses (solids)

Sample can be divided into whatever fraction ($\mathbf{\sim 1 / 2) ^ { n }}$ is practical to assess..........

Small subsamples quicker to assess

BUT

Exercise caution when determining how much to divide sample.

CAUTION!

Future Studies

When, how much to subsample?

Species-specific errors

Economic consequences

Shnorhagal em

Asante paylla Xie xie
 Enkosj
 Dhanyawad
 Mahalo Qujantar Merci

 Thank you

"Even in failure there can be Nobility! But failing to try brings only shame!"
The Silver Surfer

