Ensuring Quality of Subsamples of Large Catches of Fish

Martin A. Stapanian, U.S. Geological Survey, Sandusky, OH

Source *N. Am. J. Fish. Manage.* 32: 1033-1038 (2012).

Problem 1: How to take unbiased subsamples of large catches of fish?

Large fish surveys

Different S.S. methods Among agencies Among crew members

Who cares?

Data from fish surveys used to determine catch quotas and standing stock.

Error can mean \$\$\$\$\$

Interpretation of inter-agency data?

Problem 2: How good are the estimates of the subsample?

In Practice

Remove large, rare fish. Then

• "By eye": Take "random" area or volume of sample

"Divide" sample (better)

"By Eye" Methods: Spread out catch and Take "random" shovel fulls Take "random" area Collect "random" volume

Drawbacks

"By eye": Not repeatable Sample not mixed evenly Often observer bias

"Divide" Sample Methods:

Pour catch over adjacent tubs. Select one at random.

Repeat as needed.

Drawbacks

"Divide" sample: Difficult when rough Cumbersome "Pouring" variance

Solution--Splitter apparatus Repeatable, quantifiable Easy to use, build Defendable

Gravity-fed Removable shutter 1. Place fish in hopper. 2. Open shutter. 3. Sample divides.

Procedure

- 1. Remove large, rare species
- 2. Mix sample
- 3. Pour sample in hopper
- 4. Remove shutter
- **5. Determine side to "keep"**
- 6. Repeat steps 3-5 as needed

Performance of Apparatus: Methods

Representative of bottom trawl catches in western Lake Erie

Single splits (i.e., ~ 50%)

Three replicates

Quantify error in estimating

Number Proportion

From 1-split subsample

Estimate number of each species (n_i) using ratio of mass of total sample : mass of subsample

 $n_i = \frac{n_{i,i}}{([m_i + m_k]/m_i)}$ where n_{i,j} = no. species *i* in subsample m_i = mass of subsample $m_k = mass of fish in portion of$ sample not counted

Error estimating number

 $|\text{EN}_i| = (n_i - N_i) / N_i$ where N_i = known no. species *i* (total sample) and n_i = estimated no. species *i* (subsample)

Error estimating proportion

Error estimating prop.

Species

Mean error estimating number

em. shiner white perch trout-perch round goby -0.109 -0.022 -0.004 -0.030

Not sig. diff. from 0

Mean error estimating prop.

em. shiner-0.011white perch-0.003trout-perch0.010round goby0.004

Not sig. diff. from 0

Discussion

Apparatus performed well • EN_i and $EP_i \sim 0$ • ABS (mean EN_i) $\leq 3\%$ for 3 spp. • ABS (mean EP_i) $\leq 1.1\%$ for all spp.

EN_i for em. shiner >3X others

Potential sources:

27% mass but 60% number
Tended to stick to other fish

Suggest em. shiner did not mix uniformly

Apparatus

Height comfortable Wood prototype: \$30 & 3 hrs. User can split when ready Many other uses (solids) Sample can be divided into whatever fraction (~1/2)ⁿ is practical to assess.....

Small subsamples quicker to assess

BUT

errors (EN_i & EP_i) in a sample containing several species typically increase with smaller subsamples.

Exercise caution when determining how much to divide sample.

GAUTION!

Future Studies

When, how much to subsample?

Species-specific errors

Economic consequences

Questions?

"Even in failure there can be Nobility! But failing to try brings only shame!" The Silver Surfer